The Bracket Method: A New Approach to Algebra No More Double Signs

Lesson 1

In life, and in math, everything is either positive or negative (up or down, increase or decrease, good or bad, forward or backward). The first thing we must learn to do is to dump the idea of double signs. It will make your math life a lot easier. If your middle school worksheets looked like some of the examples below, this short chapter will help break the habit of double signs: one sign, and one sign only!

Example 1:

5 + 7 + 15 - 8 - 16 + 17

V-Notes: this symbol denotes the next section is on the Video Notes. Log on to the teacher website, and press the *Video-note link* for each lesson.

Example 2: Example 3: 18 - 9 + ⁻68 + 25 - 98 - ⁻8 - ⁺89 -32 - ⁺65 - 90 - ⁻61 + 17 A "+", or "-" sign can mean many things; create a list of real life words for both signs:`

"+": positive, plus, add, up, ______

"-": negative, subtract, minus, down, ______

The Bracket Method: A New Approach to Algebra No More Double Signs

Worksheet 1

Circle all double signs and replace with one sign, then punch the problem in your calculator exactly as you see

it!

Calc. Note The colored buttons on your calculator are math operations (add and subtract). Use these buttons only! Do not touch the negative sign if you want to add or subtract!

1: 51 + 36 - 46 + 71 + 26

What happens when the first number is "-"? You must tell the calculator the starting point is negative! The only time you use the "negative sign" when adding or subtracting is to tell the calculator the first number is negative.

Ca The negative (-) button is only o point of an addition or subtrac number is nega	alc. Note used to tell the calculator the starting ction problem is negative. If the first ative, use this button.	
3: -32 - +65 - 90 - 61 + 17	4: -28 - 18 + 92 + 28 + 65	
5: -120 - 85 + 62 - 24 - 82	6: 18-9+68+25-98-8-*89	
7: 87 - 68 + 54 + 8 - 12 - 37	8: -61 + 72 - 6 - 35 - 74	Negative

The Big Ugly (TBU): -125.89 + 95.32 + 58.6 - 71.6 + 36.9 - 17.68 - 85.13 + 98.2 - 84.2

Circle the Sign Mistake 10: 51 + 36 - 46 + 71 + 26 11: 15 + 62 - 18 - 12 - 6 12: 18 - 52 + 53 - 2 - 97 + 31 51 - 36 - 46 - 71 - 26 15 + 62 - 18 - 12 - 6 18 - 52 + 53 + 12 - 97 + 31

The Bracket Method: A New Approach to Algebra No More Double Signs

Worksheet 2

Everything in math is either positive or negative: the sign tells (1) if it is positive or negative; and (2) whether to add or subtract when combining. No more "5 + -10" or "6 - +7". A number is either + or -!

Write the following real-life scenarios as a number with the *one* appropriate sign.

- 1: balance of your checking account is \$134 2: write a check for \$103
- ______3: you sell \$350 worth of junk at a garage sale ______4: the fence must be 7 feet longer

=_____

_____=_____

=_____=

=_____

=

_____=

Write the following real-life scenarios as an expression with the one appropriate sign; then solve

5: the temperature drops by 16 degrees, then falls another 6 degrees

6: you lose 5 points for not writing your name, but get the extra credit for 2 extra points

7: 60 students left the concert early, but 23 students came in late

8: "\$20 in your pocket"; buy a shirt for \$5, socks for \$2, borrow \$1 from a friend

A little tougher: remember one sign for each number.

9: Starting temperature is 67 degrees; the temperature rises 15 degrees at noon, then goes up 8 more degrees by dinner time; the temperature then drops 19 degrees at sundown, and decreases another 5 during the night.

10: The business account had a starting balance of \$1340. You write a check for \$245; then you take \$160 out at an ATM; make a deposit for \$378; and finally, you write another check for \$29.

Worksheet 3

Fraction Time: Get rid of double signs; then use your calculator to find the answer; put the answer as a fraction.

Remember **Co** is "change order". You can change the order of an addition (or subtraction) problem, without changing the final answer.

Prove the Commutative property by going through the following examples. **a & b are the same problem, just a different order. Put both in the calculator; do you get the same answer?**

4a: -32 - 65 – 90 + 61 + 17	5a: -120 + 85 - 62 + 24 – 82
4b: 61 – 32 + 17 – 65 – 90	5b: 85 – 62 - 82 + 24 – 120

Commutative Property mistake: they switched the order but messed up the signs; circle the sign mistakes?

6a: -120 – 85 + 62 - 24 + 82	7a: -14 + 75 - 12 - 34 + 45	8a: -15 – 5 + 82 - 24 + 59
6b: -85 + 62 + 82 + 24 -120	7b: 45 – 12 + 34 – 75 + 14	8b: -24 - 15 + 59 + 5 + 82

The Bracket Method: A New Approach to Algebra How to Bracket

Lesson 2

The first, major difference, between the Bracket Method and the old PEMDAS method is "bracketing terms". In the PEMDAS method, students have to search the entire mathematical expression for six separate "operations"; performing one at a time (if possible). In the bracket method, students are taught to sequentially break an expression down into separate terms. There is only one rule, and it never changes.

$$5x^2 - (3 - x) + (-6) - 2(3x) + 6(3x^2 - 5)$$

The Simple Rule for Bracketing

Start at the beginning of the math expression and look for the first "+" or "-" sign *not* in parenthesis. That sign marks the end of one term and the beginning of another. (That sign is included in the next term; not the previous one). Continue finding the next "+" or "-" sign not in parenthesis until you reach the end of the expression.

$$5x^2 - (3 - x) + (-6) - 2(3x) + 6(3x^2 - 5)$$

Common Mistakes

Below are the common mistakes to look for.

Example 1:

Example 2:

$$5(3x) - 7(-2x) + 4(3x - 9) + 2x(3) - 5x + (7x - 8) + 4x^2 - 18(x)(-4) - (-x^3)$$

The Bracket Method: A New Approach to Algebra How to Bracket

Worksheet 1

Bracketing Terms: the first step to the bracket method is to be able to "bracket the terms" in an expression

What is the rule for bracketing:

Bracket the following expressions

1:
$$5x^2 - 6(3x) + 5y(8x) - 17$$
2: $-6x(4y) - 7x(2y-7t) + 6z - 8(5) + 19(-t)$ 3: $-2(5x) + 6(2x-7+8y) + 9(3)(-7)$ 4: $6x2(4x) - 2(5y)(-6)(-9y) - 6t - 7t^3 + 2$

5: -5 + 6y - (5)(-8x)(6y) - 8t(-6x)(3y4) - 4(-7x) - (-x)

Don't panic, stick with your rules!

6:
$$5\sqrt{6} + \sqrt{7} - 3x - 8\sqrt{7x} - (2!)(6x - 5y)$$
 7: $5x(7y) - 6x^2 + \sin 6x - \cos(3x - 9)$

TBU: -6(5x) + 6x(6y)(-6) - (4x + 5-7y) - 8(4)(-6) + 5x - 6(-x)(-y) + 4 - 6(-8) - 2 + 9x(-3x)(-6x)

How well have you trained your eyes? Without bracketing, write the number terms in each expression?

$$8: 5x(-40) - 7(-3) - (3x-4) - (3-6y) \\9: 4(3x)(4y)(-5z) - 2(3) - (53y) - 2(-5)$$

10: -6(3x)(-6y) - 6x - 6(4x-7) - 6(7)11: $-5x(7y)(-6) - 2x^2 + 5(-3x-2y^2) - x(5y) + (-t)$

Speak Geek Expression: numbers and/or variables put together in a mathematical sentence with + or – signs (no equal sign). Term: a part of a mathematical expression or equation separated by + or – signs.

Lesson 3

() are a visual hint that there is a multiplication within the term. There are only two types of multiplication in algebra. The first type is just "straight up" multiplication. We call it "Mash". Multiplication is the easiest operation in algebra: there are no "rules", just put it all together.

"Mash" is a Visual Cue

When numbers or variables are mashed together (no sign between them), think "mash potatoes"

Example 1:

Example 2:

Think Mash Potato Bowl:

- Throw everything in a pile
- No rules everything in
- Create a potato bowl (new term)
- Mash *all* numbers on the calculator (not separate problems; one line)

Multiply is Mash

Step 1: Mash the numbers (1 big pile)

4*5*6*5=600

Step 2: Throw in the peas, corn, and gravy (the variables) into the pile xyz

Multiply is Mash

Step 1: Mash the numbers (1 big pile) $4 * \frac{5}{3} * 2 = \frac{40}{3}$

Step 2: Throw in the peas, corn, and gravy (the variables) into the pile xyt

Notes 1: Mash is Multiply

Worksheet 1: Multiply is Mash (Potatoes)

In algebra, the easiest operation is multiplication. Just put it all the signs, numbers, letters in one pile (like your uncle's mash potato plate at thanksgiving: potato's, butter, peas, carrots, etc.),

Multiply each term							
1: 4(3x)(6y)	2: 7x(7y)(5t)(2)	3: 6(2x)(5)(2t)(10)	4: x(y)(t)(z)	5: 2(x)(5)(2y)			
Don't forget about signs?							
a: Even # of – signs =	= b: O	dd # of – signs =					
Multiply each term: (1) signs; (2) numbers; (3) letters							
6: -3(4x)(7y)(-5t)	7: 4t	(6y)(-5)(-8z)	8: -6(-4x)(-7y	v)(5t)(10z)			
9: 4(-3x)(12y)(-4)(-9:	z) 10: -(2)(3x)(-7y)(-10)(-8t)	11: -x(y)(-z)(1	:)			
12: -6.8x(2.3y)(-7.1z) 13: 2	2.5(-6.8x)(6.25y)(-6.5t)	14: -(3.4x)(8.	4y)(-9.2t)(-4)			

TBU: $\frac{3}{5}(7x)\left(-\frac{3}{4}\right)\left(\frac{2}{8}y\right)(-5t)(-t)(-8z)$

Math Geeks Only:

15: Is 5(4)(-6)(-10) the same as -6(5)(-10)(4) ? Use your calculator and prove it!

16: What property allows you to change the order and keep the same answer? (hint: change order)

Example 1:-(-3x) + 16y(-4x) - 4(2y)Bracket, then Mash each term3x - 64xy - 8yStep 1: Bracket terms
Step 2: MashV-NotesMash Numbers
Peas and Carrots

A quick note on the "Solo Artist"

What happens if there is no () in a bracket? It simply means there is no multiplication (mash or distribute) that needs to be done. We refer to this as a solo "artist" (just for fun). Just bring it down exactly as it is.

Example 2:
$$3 - (3x) + 16y(-4) - 4(2x) + 7$$

Example 3:
$$4(-3x)(-5y) - 7(-4y) - 3 + 3(x)(-5t) + x - (-3t)$$

Bracket and Mash (with Solo)

Example 2: 4(-3x)(-5y) - 7(4y) - 3 + 3(x)(-5t) + x - (-3t)

Lesson 3.5

The Bracket Method: A New Approach to Algebra Mash Multiplication

Worksheet 2: Put it together (Bracket and Mash)

Bracket (1st) and then Mash (2nd) each term separately (signs, numbers, letters)

1:
$$4(3x) - 4(-5x)(2y) - 3(4y)$$

2: $-5x(4y)(2) - 5(-2x) + 7(3t)(-5x)$

3:
$$3(-5) + 3x(-7y) - 3(-x)(y)(-t)$$

4: $-(4)(-5) - 5(-2x)(-7) + 4(-6x)(y)$

5:
$$-(-4x) + (-6)(-5t)(7z) - x(-y)(-z)$$

6: $7(3) - 4(-8x) + 4x(2y) - 6(-8t)$

7:
$$x - 4t(6)(3) - 6 + 2x(-6y)$$

8: $-6(-4)(-5)(7) - (2x)(3y)(-6y)(3)$

9:
$$-(-1)(-1)(-5) + 3x(-3z) + 5(-y)$$
 10: $3.2(-6.5) + 4x(-5.7)(-2.1) - 3.6z(-4.5t)$

11:
$$-12(7x)(-15y) - 5(-19)(6t) - (-12x)(-25)$$

12: $-t - (-x)(-t)(-y) - (v)(-z)(-t) - x(z)$

$$\mathsf{TBU:}\ \frac{3}{5}x(7y) - 5\left(\frac{2}{3}x\right)\left(-\frac{4}{7}t\right) + 5.6t(-5x)\left(\frac{2}{5}y\right) - (-7.2t) + 5.8\left(\frac{7}{9}y\right)\left(\frac{6}{5}t\right) - x(-y)(-8z) + \frac{9}{3}x(-y)(-8z) + \frac{9}{3}x(-y)(-9z) + \frac{9}{3}x(-y)(-$$

The Bracket Method: A New Approach to Algebra Mash Multiplication Worksheet 3: Mixed Review

- 1: -32 ⁺65 90 ⁻61 + 17 2: -28 - 18 + 92 + ⁻28 + ⁻65
- 3: -120 85 + -62 +24 82 4: 18 9 + -68 + 25 98 -8 +89

Part II: Bracket the following terms: don't do the math; just see how many terms there are!

5:
$$5(2x) - 7(-3) + x(y)(-z)$$

6: $sin32 - 14(x) + 4cos(3x) - 2(3)(4)$

7:
$$\frac{3}{4}(4x-7) + 3\sqrt{49-5x} + \frac{2}{5}(x)(y)$$

8: $4 - (7-2x) - (x)(2y) + 17(4) - 2x^3 + 16(-x^2)(x)^3$

Part III: Mash the following terms

12: 7(-6y)(5x)(-t) 13: $\frac{3}{5}(5y)\left(\frac{2}{3}t\right)\left(-\frac{3}{8}x\right)$ 14: -(-x)(-y)(-t)(-z)

Part IV: Bracket; then Mash each term.

15: 2(-4) + 4x(-6y) - 3(-x)(5)(-t)16: -(3)(-5) - 2(-3x)(-5) + 3(-6x)(y)

17:
$$-(-4x) + (-3)(-2t)(7z) - x(-2)(-z)$$

18: $5(4) - (-8z) + 4x(2y) - 3(-7t)$